APPLICATION OF LOW-FIELD NUCLEAR MAGNETIC RESONANCE (LF-NMR) AND MAGNETIC RESONANCE IMAGING (MRI) IN FOOD ANALYSIS
DOI:
https://doi.org/10.17605/OSF.IO/X83UBKeywords:
Online low field nuclear magnetic resonance (LF-NMR), magnetic resonance imaging (MRI), food, food science, analysisAbstract
NMR/MRI spectroscopy is a reliable approach for analyzing mixtures at the molecular level without the need
for separation or purification, making it excellent for food science applications. With the recent breakthroughs in
the field, low-field nuclear magnetic resonance (LF- NMR) and magnetic resonance imaging (MRI) have shown
to be fast, reliable and aids in non-invasive characterization of foods, which makes it an alternative to the
laborious conventional techniques. The application of this novel technique has been explored by food scientists
and continue to make advances in it’s extensive application for food analysis and processing. This review
focused on current applications of LF-NMR/MRI in food research precisely in quality control, food processing,
food authentication, 3D printability and food packaging. Limitations as well as future prospects in LFNMR/
MRI applications were briefly discussed.
Downloads
References
Agiomyrgianaki, A., Petrakis, P. V., & Dais, P. (2012). Influence of harvest year, cultivar and
geographical origin on Greek extra virgin olive oils composition: A study by NMR spectroscopy and
biometric analysis. Food Chemistry, 135(4), 2561–2568. https:// doi.o rg/10.1 016/J. FOODC HEM
.2012.07.050
Akanbi, T. O., & Barrow, C. J. (2018). Compositional Information Useful for Authentication of Krill
Oil and the Detection of Adulterants. Food Analytical Methods, 11(1), 178–187.
https://doi.org/10.1007/S12161-017-0988-X/FIGURES/6
Ali, S., Zhang, W., Rajput, N., Khan, M. A., Li, C. B., & Zhou, G. H. (2015). Effect of multiple freezethaw
cycles on the quality of chicken breast meat. Food Chemistry, 173, 808–814.
https://doi.org/10.1016/j.foodchem.2014.09.095
Alonso-Salces, R. M., Moreno-Rojas, J. M., Holland, M. V., Reniero, F., Guillou, C., & Héberger, K.
(2010). Virgin olive oil authentication by multivariate analyses of 1H NMR fingerprints and γ13c and
γ2h data. Journal of Agricultural and Food Chemistry, 58(9), 5586–5596.
https://doi.org/10.1021/JF903989B
Araujo, P., Tilahun, E., & Zeng, Y. (2018). A novel strategy for discriminating marine oils by using the
positional distribution (sn-1, sn-2, sn-3) of omega-3 polyunsaturated fatty acids in triacylglycerols.
Talanta, 182, 32–37. https://doi.org/10.1016/J.TALANTA.2018.01.030
Bertelli, D., Lolli, M., Papotti, G., Bortolotti, L., Serra, G., & Plessi, M. (2010). Detection of honey
adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear
magnetic resonance. Journal of Agricultural and Food Chemistry, 58(15), 8495–8501.
https://doi.org/10.1021/JF101460T
Bourne, M. C. (2002). Food Texture and Viscosity: Concept and Measurement. Academic Press.
https://doi.org/10.1016/C2009-0-03042-6
Bushong, S. C., & Clarke, G. (2015). Magnetic Resonance Principles: Physical and Biological
Principles.
Butz, P., Hofmann, C., & Tauscher, B. (2005). Recent developments in noninvasive techniques for
fresh fruit and vegetable internal quality analysis. Journal of Food Science, 70(9), R131–R141.
https://doi.org/10.1111/j.1365-2621.2005.tb08328.x
Chen, H. zhi, Zhang, M., & Yang, C. hui. (2021). Comparative analysis of 3D printability and
rheological properties of surimi gels via LF-NMR and dielectric characteristics. Journal of Food
Engineering, 292(August 2020), 110278. https://doi.org/10.1016/j.jfoodeng.2020.110278
Cheng, J. H., Dai, Q., Sun, D. W., Zeng, X. A., Liu, D., & Pu, H. Bin. (2013). Applications of nondestructive
spectroscopic techniques for fish quality and safety evaluation and inspection. Trends in
Food Science & Technology, 34(1), 18–31. https://doi.org/10.1016/j.tifs.2013.08.005
Cheng, X. F., Zhang, M., Adhikari, B., & Islam, M. N. (2014). Effect of power ultrasound and pulsed
vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically
dehydrated strawberry: a combined NMR and DSC study. Food and Bioprocess Technology, 7(10),
–2792. https://doi.org/10.1007/s11947-014-1355-1
Clausen, M. R., Edelenbos, M., & Bertram, H. C. (2014). Mapping the variation of the carrot
metabolome using 1H NMR spectroscopy and consensus PCA. Journal of Agricultural and Food
Chemistry, 62(19), 4392–4398. https://doi.or /10.1021/J F5014555/S UPPL_FIL E/JF501455 5_SI
_002.PDF
Dalitz, F., Cudaj, M., Maiwald, M., & Guthausen, G. (2012). Process and reaction monitoring by lowfield
NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 60, 52–70.
https://doi.org/10.1016/j.pnmrs.2011.11.003
Divya, S., Thyagarajan, D., & Sujatha, G. (n.d.). MAGNETIC RESONANCE IMAGING
TECHNOLOGY FOR PROCESS CONTROL AND QUALITY MAINTENANCE IN FOOD
QUALITY OPERATION.
Du, Y., Zhang, M., & Chen, H. (2021). Effect of whey protein on the 3D printing performance of
konjac hybrid gel. LWT, 140, 110716. https://doi.org/10.1016/J.LWT.2020.110716
Ellis, D. I., Brewster, V. L., Dunn, W. B., Allwood, J. W., Golovanov, A. P., & Goodacre, R. (2012).
Fingerprinting food: Current technologies for the detection of food adulteration and contamination.
Chemical Society Reviews, 41(17), 5706–5727. https://doi.org/10.1039/C2CS35138B
Erikson, U., Standal, I. B., Aursand, I. G., Veliyulin, E., & Aursand, M. (2012). Use of NMR in fish
processing optimization: a review of recent progress. Magnetic Resonance in Chemistry, 50(7), 471–
https://doi.org/10.1002/mrc.3825
Ezeanaka, M. C., Nsor-Atindana, J., & Zhang, M. (1947). Online Low-field Nuclear Magnetic
Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) for Food Quality Optimization in
Food Processing. https://doi.org/10.1007/s11947-019-02296-w
Feng, C., Zhang, M., Bhandari, B., & Ye, Y. (2020). Use of potato processing by-product: Effects on
the 3D printing characteristics of the yam and the texture of air-fried yam snacks. LWT, 125, 109265.
https://doi.org/10.1016/J.LWT.2020.109265
Geng, S., Wang, H., Wang, X., Ma, X., Xiao, S., Wang, J., & Tan, M. (2015). A non-invasive NMR
and MRI method to analyze the rehydration of dried sea cucumber. Analytical Methods, 7(6), 2413–
https://doi.org/10.1039/c4ay03007a
Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design:
Status and prospects. Journal of Food Engineering, 179, 44–54.
https://doi.org/10.1016/J.JFOODENG.2016.01.025
Gostan, T., Moreau, C., Juteau, A., Guichard, E., & Delsuc, M. A. (2004). Measurement of aroma
compound self-diffusion in food models by DOSY. Magnetic Resonance in Chemistry : MRC, 42(6),
–499. https://doi.org/10.1002/MRC.1383
Gudjónsdóttir, M., Jónsson, Á., Bergsson, A. B., Arason, S., & Rustad, T. (2011). Shrimp processing
assessed by low field nuclear magnetic resonance, near infrared spectroscopy, and physicochemical
measurements—the effect of polyphosphate content and length of prebrining on shrimp muscle.
Journal of Food Science, 76(4), E357–E367. https://doi.org/10.1111/j.1750-3841.2011.02112.x
Gudjónsdóttir, M., Karlsdóttir, M. G., Arason, S., & Rustad, T. (2013). Injection of fish protein
solutions of fresh saithe (Pollachius virens) fillets studied by low field nuclear magnetic resonance and
physicochemical measurements. Journal of Food Science and Technology, 50(2), 228–238.
https://doi.org/10.1007/s13197-011-0348-6
Gudjónsdóttir, M., Napitupulu, R. J., & Petty Kristinsson, H. T. (2019). Low field NMR for quality
monitoring of 3D printed surimi from cod by‐ products: Effects of the pH‐ shift method compared
with conventional washing. Undefined, 57(9), 638–648. https://doi.org/10.1002/MRC.4855
Hall, L. D., Evans, S. D., & Nott, K. P. (1998). Measurement of textural changes of food by MRI
relaxometry. Magnetic Resonance Imaging, 16(5–6), 485–492. https://doi.org/10.1016/S0730-
X(98)00116-7
Hou, X., Wang, G., Wang, X., Ge, X., Fan, Y., & Nie, S. (2020). Convolutional neural network based
approach for classification of edible oils using low-field nuclear magnetic resonance. Journal of Food
Composition and Analysis, 92. https://doi.org/10.1016/j.jfca.2020.103566
Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of
quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.
https://doi.org/10.1016/j.jfoodeng.2007.12.022
Jakes, W., Gerdova, A., Defernez, M., Watson, A. D., McCallum, C., Limer, E., Colquhoun, I. J.,
Williamson, D. C., & Kemsley, E. K. (2015). Authentication of beef versus horse meat using 60 MHz
H NMR spectroscopy. Food Chemistry, 175, 1–9. https://doi.org/10.1016/j.foodchem.2014.11.110
Jiang, J., Gong, L., Dong, Q., Kang, Y., Osako, K., & Li, L. (2020). Characterization of PLA-P3,4HB
active film incorporated with essential oil: Application in peach preservation. Food Chemistry,
(June 2019). https://doi.org/10.1016/j.foodchem.2019.126134
Jin, H., Lu, Q., Chen, X., Ding, H., Gao, H., & Jin, S. (2016). The use of Raman spectroscopy in food
processes: a review. Applied Spectroscopy Reviews, 51(1), 12–22.
https://doi.org/10.1080/05704928.2015.1087404
Kim, D., & Seo, J. (2018). A review: Breathable films for packaging applications. Trends in Food
Science and Technology, 76(July 2017), 15–27. https://doi.org/10.1016/j.tifs.2018.03.020
Krause, A., Wu, Y., Tian, R., & Van Beek, T. A. (2018). Is Low-field NMR a Complementary Tool to
GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil. Planta Medica,
(12–13), 953–963. https://doi.org/10.1055/A-0605-3967
Kreyenschulte, D., Paciok, E., Regestein, L., Blümich, B., & Büchs, J. (2015). Online monitoring of
fermentation processes via non-invasive low-field NMR. Biotechnology and Bioengineering, 112(9),
–1821. https://doi.org/10.1002/bit.25599
Laghi, L., Versari, A., Marcolini, E., Parpinello, G. P., Laghi, L., Versari, A., Marcolini, E., &
Parpinello, G. P. (2014). Metabonomic Investigation by 1H-NMR to Discriminate between Red Wines
from Organic and Biodynamic Grapes. Food and Nutrition Sciences, 5(1), 52–59.
https://doi.org/10.4236/FNS.2014.51007
Lamanna, R., Piscioneri, I., Romanelli, V., & Sharma, N. (2008). A preliminary study of soft cheese
degradation in different packaging conditions by 1H-NMR. Magnetic Resonance in Chemistry, 46(9),
–831. https://doi.org/10.1002/MRC.2258
Le Tohic, C., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., Kerry, J. P., &
Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese.
Journal of Food Engineering, 220, 56–64. https://doi.org/10.1016/J.JFOODENG.2017.02.003
Li, D., Li, L., Xiao, G., Limwachiranon, J., Xu, Y., Lu, H., Yang, D., & Luo, Z. (2018). Effects of
elevated CO2 on energy metabolism and γ-aminobutyric acid shunt pathway in postharvest strawberry
fruit. Food Chemistry, 265, 281–289. https://doi.org/10.1016/J.FOODCHEM.2018.05.106
Lund, D. (2003). Predicting the impact of food processing on food constituents. Journal of Food
Engineering, 56(2–3), 113–117. https://doi.org/10.1016/s0260-8774(02)00322-9
Lv, W., Zhang, M., Wang, Y., & Adhikari, B. (2018). Online measurement of moisture content,
moisture distribution, and state of water in corn kernels during microwave vacuum drying using novel
smart NMR/MRI detection system. Https://Doi.Org/10.1080/07373937.2017.1418751, 36(13), 1592–
https://doi.org/10.1080/07373937.2017.1418751
Ma, L., Zhang, M., Xu, J., & Bai, B. (2021). Quality evaluation of Kungpao Chicken as affected by
radio frequency combined with ZnO nanoparticles. LWT, 135, 110203.
https://doi.org/10.1016/J.LWT.2020.110203
Mantihal, S., Prakash, S., & Bhandari, B. (2019). Textural modification of 3D printed dark chocolate
by varying internal infill structure. Food Research International, 121, 648–657.
https://doi.org/10.1016/j.foodres.2018.12.034
Marcone, M. F., Wang, S., Albabish, W., Nie, S., Somnarain, D., & Hill, A. (2013). Diverse foodbased
applications of nuclear magnetic resonance (NMR) technology. In Food Research International
(Vol. 51, Issue 2, pp. 729–747). https://doi.org/10.1016/j.foodres.2012.12.046
Miklos, R., Cheong, L. Z., Xu, X., Lametsch, R., & Larsen, F. H. (2015). Water and fat mobility in
myofibrillar protein gels explored by low-field NMR. Food Biophysics, 10(3), 316–323.
https://doi.org/10.1007/s11483-015-9392-5
Nordon, A., McGill, C. A., & Littlejohn, D. (2001). Process NMR spectrometry. Analyst, 126(2), 260–
https://doi.org/10.1039/b009293m
Ozel, B., & Oztop, M. H. (2021). A quick look to the use of time domain nuclear magnetic resonance
relaxometry and magnetic resonance imaging for food quality applications. In Current Opinion in Food
Science (Vol. 41, pp. 122–129). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2021.03.012
Pentimalli, M., Capitani, D., Ferrando, A., Ferri, D., Ragni, P., & Segre, A. L. (2000). Gamma
irradiation of food packaging materials: an NMR study. Polymer, 41(8), 2871–2881.
https://doi.org/10.1016/S0032-3861(99)00473-5
Pereira, F. M. V., & Colnago, L. A. (2012). Determination of the Moisture Content in Beef Without
Weighing Using Benchtop Time-Domain Nuclear Magnetic Resonance Spectrometer and
Chemometrics. Food Analytical Methods, 5(6), 1349–1353. https://doi.org/10.1007/S12161-012-9383-
Pérez, B., Nykvist, H., Brøgger, A. F., Larsen, M. B., & Falkeborg, M. F. (2007). Result. Food
Chemistry, 287, 249–257. https://doi.org/10.1016/J.FOODCHEM.2019.02.090
Phuhongsung, P., Zhang, M., & Devahastin, S. (2020). Investigation on 3D printing ability of soybean
protein isolate gels and correlations with their rheological and textural properties via LF-NMR
spectroscopic characteristics. LWT, 122, 109019. https://doi.org/10.1016/J.LWT.2020.109019
Pykett, I. L. (2000). NMR - a powerful tool for industrial process control and quality assurance. IEEE
Transactions on Applied Superconductivity, 10(1), 721–723. https://doi.org/10.1109/77.828333
Ramanjooloo, A., Bhaw-Luximon, A., Jhurry, D., & Cadet, F. (2009). 1H NMR quantitative
assessment of lactic acid produced by biofermentation of cane sugar juice. Spectroscopy Letters, 42(6–
, 296–304. https://doi.org/10.1080/00387010903178632
Razavi, M. S., Asghari, A., Azadbakh, M., & Shamsabadi, H. A. (2018). Analyzing the pear bruised
volume after static loading by Magnetic Resonance Imaging (MRI). Scientia Horticulturae, 229, 33–39.
https://doi.org/10.1016/J.SCIENTA.2017.10.011
Riegel SD. (2015). Determination of olive oil adulteration with 60-MHz benchtop NMR spectrometry.
American Laboratory, 47(2), 16–19. https://www.americanlaboratory.com/914-Application-
Notes/172517-Determination-of-Olive-Oil-Adulteration-With-60-MHz-Benchtop-NMR-Spectrometry/
Sangpring, Y., Fukuoka, M., & Ratanasumawong, S. (2015). The effect of sodium chloride on
microstructure, water migration, and texture of rice noodle. LWT - Food Science and Technology,
(2), 1107–1113. https://doi.org/10.1016/J.LWT.2015.07.035
Sekiyama, Y., Horigane, A. K., Ono, H., Irie, K., Maeda, T., & Yoshida, M. (2012). T2 distribution of
boiled dry spaghetti measured by MRI and its internal structure observed by fluorescence microscopy.
Food Research International, 48(2), 374–379. https://doi.org/10.1016/j.foodres.2012.05.019
Shao, J. H., Deng, Y. M., Song, L., Batur, A., Jia, N., & Liu, D. Y. (2016). Investigation the effects of
protein hydration states on the mobility water and fat in meat batters by LF-NMR technique. LWTFood
Science and Technology, 66, 1–6. https://doi.org/10.1016/j.lwt.2015.10.008
Shao, X., & Li, Y. (2013). Application of low-field NMR to analyze water characteristics and predict
unfrozen water in blanched sweet corn. Food and Bioprocess Technology, 6(6), 1593–1599.
https://doi.org/10.1007/s11947-011-0727-z
Shi, F., Li, Y., Wang, L., Yang, Y., Lu, K., Wu, S., & Ming, J. (2018). Measurement of moisture
transformation and distribution in Tricholoma matsutake by low field nuclear magnetic resonance
during the hot-air drying process. Journal of Food Processing and Preservation, 42(3), e13565.
https://doi.org/10.1111/jfpp.13565
Song, Y., Cheng, S., Wang, H., Zhu, B. W., Zhou, D., Yang, P., & Tan, M. (2018). Variable
temperature nuclear magnetic resonance and magnetic resonance imaging system as a novel technique
for in situ monitoring of food phase transition. Journal of Agricultural and Food Chemistry, 66(3),
–747. https://doi.org/10.1021/acs.jafc.7b04334
Uribe-Alvarez, R., O’Shea, N., Murphy, C. P., Coleman-Vaughan, C., & Guinee, T. P. (2021).
Evaluation of rennet-induced gelation under different conditions as a potential method for 3D food
printing of dairy-based high-protein formulations. Food Hydrocolloids, 114.
https://doi.org/10.1016/J.FOODHYD.2020.106542
Wang, J., Liu, C., & Sun, D. (2018). Study on relationship between polar compounds and LF-NMR
properties in fried camellia seed oil. Journal of Food and Nutrition Research, 6(7), 433–438.
https://doi.org/10.12691/jfnr-6-7-2
Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising
food material for 3D printing. Undefined, 220, 101–108.
https://doi.org/10.1016/J.JFOODENG.2017.02.029
Wang, T., Liu, T., Wang, Z., Tian, X., Yang, Y., Guo, M., Chu, J., & Zhuang, Y. (2016). A rapid and
accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal
fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance. Journal
of Microbiological Methods, 124, 13–20. https://doi.org/10.1016/j.mimet.2016.03.003
Wu, J., Li, Y., & Gao, X. (2016). Monitoring a typical fermentation process of natto by low-field
nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) techniques. Analytical
Methods, 8(39), 7135–7140. https://doi.org/10.1039/c6ay00814c
Xin, Y., Zhang, M., & Adhikari, B. (2013). Effect of trehalose and ultrasound-assisted osmotic
dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var.
botrytis L.). Journal of Food Engineering, 119(3), 640–647.
https://doi.org/10.1016/j.jfoodeng.2013.06.035
www.iejrd.com SJIF: 7.169 18
Yang, D., & Ying, Y. (2011). Applications of Raman spectroscopy in agricultural products and food
analysis: a review. Applied Spectroscopy Reviews, 46(7), 539–560. https ://doi.or g/10.1080 /0570492
2011.593216
Yue, X., Sun, J., Yang, T., Dong, Q., Li, T., Ding, S., Liang, X., Feng, K., Gao, X., Yang, M., Huang,
G., & Zhang, J. (2021). Rapid detection of Salmonella in milk by a nuclear magnetic resonance
biosensor based on the streptavidin-biotin system and O-carboxymethyl chitosan target gadolinium
probe. Journal of Dairy Science, 104(11), 11486–11498. https://doi.org/10.3168/jds.2021-20716
Zehl, M., Braunberger, C., Conrad, J., Crnogorac, M., Krasteva, S., Vogler, B., Beifuss, U., & Krenn,
L. (2011). Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically
important Drosera species by LC-DAD, LC-NMR, NMR, and LC-MS. Analytical and Bioanalytical
Chemistry, 400(8), 2565–2576. https://doi.org/10.1007/S00216-011-4690-3
Zhang, Q. Q., Li, W., Li, H. K., Chen, X. H., Jiang, M., & Dong, M. S. (2017). Low-field nuclear
magnetic resonance for online determination of water content during sausage fermentation. Journal of
Food Engineering, 212, 291–297. https://doi.org/10.1016/j.jfoodeng.2017.05.021
Zhang, Y., Zhang, T., Fan, D., Li, J., & Fan, L. (2018). The description of oil absorption behavior of
potato chips during the frying. LWT, 96, 119–126. https://doi.org/10.1016/j.lwt.2018.04.094
Zhu, W., Wang, X., & Chen, L. (2017). Rapid detection of peanut oil adulteration using low-field
nuclear magnetic resonance and chemometrics. Food Chemistry, 216, 268–274.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IEJRD

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.















