APPLICATION OF LOW-FIELD NUCLEAR MAGNETIC RESONANCE (LF-NMR) AND MAGNETIC RESONANCE IMAGING (MRI) IN FOOD ANALYSIS

Authors

  • Tracy Naa Adoley Addotey, The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
  • Richmond Godwin Afful Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, P. R. China
  • Alberta Osei Barimah The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China

DOI:

https://doi.org/10.17605/OSF.IO/X83UB

Keywords:

Online low field nuclear magnetic resonance (LF-NMR), magnetic resonance imaging (MRI), food, food science, analysis

Abstract

NMR/MRI spectroscopy is a reliable approach for analyzing mixtures at the molecular level without the need
for separation or purification, making it excellent for food science applications. With the recent breakthroughs in
the field, low-field nuclear magnetic resonance (LF- NMR) and magnetic resonance imaging (MRI) have shown
to be fast, reliable and aids in non-invasive characterization of foods, which makes it an alternative to the
laborious conventional techniques. The application of this novel technique has been explored by food scientists
and continue to make advances in it’s extensive application for food analysis and processing. This review
focused on current applications of LF-NMR/MRI in food research precisely in quality control, food processing,
food authentication, 3D printability and food packaging. Limitations as well as future prospects in LFNMR/
MRI applications were briefly discussed.

Downloads

Download data is not yet available.

References

Agiomyrgianaki, A., Petrakis, P. V., & Dais, P. (2012). Influence of harvest year, cultivar and

geographical origin on Greek extra virgin olive oils composition: A study by NMR spectroscopy and

biometric analysis. Food Chemistry, 135(4), 2561–2568. https:// doi.o rg/10.1 016/J. FOODC HEM

.2012.07.050

Akanbi, T. O., & Barrow, C. J. (2018). Compositional Information Useful for Authentication of Krill

Oil and the Detection of Adulterants. Food Analytical Methods, 11(1), 178–187.

https://doi.org/10.1007/S12161-017-0988-X/FIGURES/6

Ali, S., Zhang, W., Rajput, N., Khan, M. A., Li, C. B., & Zhou, G. H. (2015). Effect of multiple freezethaw

cycles on the quality of chicken breast meat. Food Chemistry, 173, 808–814.

https://doi.org/10.1016/j.foodchem.2014.09.095

Alonso-Salces, R. M., Moreno-Rojas, J. M., Holland, M. V., Reniero, F., Guillou, C., & Héberger, K.

(2010). Virgin olive oil authentication by multivariate analyses of 1H NMR fingerprints and γ13c and

γ2h data. Journal of Agricultural and Food Chemistry, 58(9), 5586–5596.

https://doi.org/10.1021/JF903989B

Araujo, P., Tilahun, E., & Zeng, Y. (2018). A novel strategy for discriminating marine oils by using the

positional distribution (sn-1, sn-2, sn-3) of omega-3 polyunsaturated fatty acids in triacylglycerols.

Talanta, 182, 32–37. https://doi.org/10.1016/J.TALANTA.2018.01.030

Bertelli, D., Lolli, M., Papotti, G., Bortolotti, L., Serra, G., & Plessi, M. (2010). Detection of honey

adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear

magnetic resonance. Journal of Agricultural and Food Chemistry, 58(15), 8495–8501.

https://doi.org/10.1021/JF101460T

Bourne, M. C. (2002). Food Texture and Viscosity: Concept and Measurement. Academic Press.

https://doi.org/10.1016/C2009-0-03042-6

Bushong, S. C., & Clarke, G. (2015). Magnetic Resonance Principles: Physical and Biological

Principles.

Butz, P., Hofmann, C., & Tauscher, B. (2005). Recent developments in noninvasive techniques for

fresh fruit and vegetable internal quality analysis. Journal of Food Science, 70(9), R131–R141.

https://doi.org/10.1111/j.1365-2621.2005.tb08328.x

Chen, H. zhi, Zhang, M., & Yang, C. hui. (2021). Comparative analysis of 3D printability and

rheological properties of surimi gels via LF-NMR and dielectric characteristics. Journal of Food

Engineering, 292(August 2020), 110278. https://doi.org/10.1016/j.jfoodeng.2020.110278

Cheng, J. H., Dai, Q., Sun, D. W., Zeng, X. A., Liu, D., & Pu, H. Bin. (2013). Applications of nondestructive

spectroscopic techniques for fish quality and safety evaluation and inspection. Trends in

Food Science & Technology, 34(1), 18–31. https://doi.org/10.1016/j.tifs.2013.08.005

Cheng, X. F., Zhang, M., Adhikari, B., & Islam, M. N. (2014). Effect of power ultrasound and pulsed

vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically

dehydrated strawberry: a combined NMR and DSC study. Food and Bioprocess Technology, 7(10),

–2792. https://doi.org/10.1007/s11947-014-1355-1

Clausen, M. R., Edelenbos, M., & Bertram, H. C. (2014). Mapping the variation of the carrot

metabolome using 1H NMR spectroscopy and consensus PCA. Journal of Agricultural and Food

Chemistry, 62(19), 4392–4398. https://doi.or /10.1021/J F5014555/S UPPL_FIL E/JF501455 5_SI

_002.PDF

Dalitz, F., Cudaj, M., Maiwald, M., & Guthausen, G. (2012). Process and reaction monitoring by lowfield

NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 60, 52–70.

https://doi.org/10.1016/j.pnmrs.2011.11.003

Divya, S., Thyagarajan, D., & Sujatha, G. (n.d.). MAGNETIC RESONANCE IMAGING

TECHNOLOGY FOR PROCESS CONTROL AND QUALITY MAINTENANCE IN FOOD

QUALITY OPERATION.

Du, Y., Zhang, M., & Chen, H. (2021). Effect of whey protein on the 3D printing performance of

konjac hybrid gel. LWT, 140, 110716. https://doi.org/10.1016/J.LWT.2020.110716

Ellis, D. I., Brewster, V. L., Dunn, W. B., Allwood, J. W., Golovanov, A. P., & Goodacre, R. (2012).

Fingerprinting food: Current technologies for the detection of food adulteration and contamination.

Chemical Society Reviews, 41(17), 5706–5727. https://doi.org/10.1039/C2CS35138B

Erikson, U., Standal, I. B., Aursand, I. G., Veliyulin, E., & Aursand, M. (2012). Use of NMR in fish

processing optimization: a review of recent progress. Magnetic Resonance in Chemistry, 50(7), 471–

https://doi.org/10.1002/mrc.3825

Ezeanaka, M. C., Nsor-Atindana, J., & Zhang, M. (1947). Online Low-field Nuclear Magnetic

Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) for Food Quality Optimization in

Food Processing. https://doi.org/10.1007/s11947-019-02296-w

Feng, C., Zhang, M., Bhandari, B., & Ye, Y. (2020). Use of potato processing by-product: Effects on

the 3D printing characteristics of the yam and the texture of air-fried yam snacks. LWT, 125, 109265.

https://doi.org/10.1016/J.LWT.2020.109265

Geng, S., Wang, H., Wang, X., Ma, X., Xiao, S., Wang, J., & Tan, M. (2015). A non-invasive NMR

and MRI method to analyze the rehydration of dried sea cucumber. Analytical Methods, 7(6), 2413–

https://doi.org/10.1039/c4ay03007a

Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design:

Status and prospects. Journal of Food Engineering, 179, 44–54.

https://doi.org/10.1016/J.JFOODENG.2016.01.025

Gostan, T., Moreau, C., Juteau, A., Guichard, E., & Delsuc, M. A. (2004). Measurement of aroma

compound self-diffusion in food models by DOSY. Magnetic Resonance in Chemistry : MRC, 42(6),

–499. https://doi.org/10.1002/MRC.1383

Gudjónsdóttir, M., Jónsson, Á., Bergsson, A. B., Arason, S., & Rustad, T. (2011). Shrimp processing

assessed by low field nuclear magnetic resonance, near infrared spectroscopy, and physicochemical

measurements—the effect of polyphosphate content and length of prebrining on shrimp muscle.

Journal of Food Science, 76(4), E357–E367. https://doi.org/10.1111/j.1750-3841.2011.02112.x

Gudjónsdóttir, M., Karlsdóttir, M. G., Arason, S., & Rustad, T. (2013). Injection of fish protein

solutions of fresh saithe (Pollachius virens) fillets studied by low field nuclear magnetic resonance and

physicochemical measurements. Journal of Food Science and Technology, 50(2), 228–238.

https://doi.org/10.1007/s13197-011-0348-6

Gudjónsdóttir, M., Napitupulu, R. J., & Petty Kristinsson, H. T. (2019). Low field NMR for quality

monitoring of 3D printed surimi from cod by‐ products: Effects of the pH‐ shift method compared

with conventional washing. Undefined, 57(9), 638–648. https://doi.org/10.1002/MRC.4855

Hall, L. D., Evans, S. D., & Nott, K. P. (1998). Measurement of textural changes of food by MRI

relaxometry. Magnetic Resonance Imaging, 16(5–6), 485–492. https://doi.org/10.1016/S0730-

X(98)00116-7

Hou, X., Wang, G., Wang, X., Ge, X., Fan, Y., & Nie, S. (2020). Convolutional neural network based

approach for classification of edible oils using low-field nuclear magnetic resonance. Journal of Food

Composition and Analysis, 92. https://doi.org/10.1016/j.jfca.2020.103566

Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of

quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.

https://doi.org/10.1016/j.jfoodeng.2007.12.022

Jakes, W., Gerdova, A., Defernez, M., Watson, A. D., McCallum, C., Limer, E., Colquhoun, I. J.,

Williamson, D. C., & Kemsley, E. K. (2015). Authentication of beef versus horse meat using 60 MHz

H NMR spectroscopy. Food Chemistry, 175, 1–9. https://doi.org/10.1016/j.foodchem.2014.11.110

Jiang, J., Gong, L., Dong, Q., Kang, Y., Osako, K., & Li, L. (2020). Characterization of PLA-P3,4HB

active film incorporated with essential oil: Application in peach preservation. Food Chemistry,

(June 2019). https://doi.org/10.1016/j.foodchem.2019.126134

Jin, H., Lu, Q., Chen, X., Ding, H., Gao, H., & Jin, S. (2016). The use of Raman spectroscopy in food

processes: a review. Applied Spectroscopy Reviews, 51(1), 12–22.

https://doi.org/10.1080/05704928.2015.1087404

Kim, D., & Seo, J. (2018). A review: Breathable films for packaging applications. Trends in Food

Science and Technology, 76(July 2017), 15–27. https://doi.org/10.1016/j.tifs.2018.03.020

Krause, A., Wu, Y., Tian, R., & Van Beek, T. A. (2018). Is Low-field NMR a Complementary Tool to

GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil. Planta Medica,

(12–13), 953–963. https://doi.org/10.1055/A-0605-3967

Kreyenschulte, D., Paciok, E., Regestein, L., Blümich, B., & Büchs, J. (2015). Online monitoring of

fermentation processes via non-invasive low-field NMR. Biotechnology and Bioengineering, 112(9),

–1821. https://doi.org/10.1002/bit.25599

Laghi, L., Versari, A., Marcolini, E., Parpinello, G. P., Laghi, L., Versari, A., Marcolini, E., &

Parpinello, G. P. (2014). Metabonomic Investigation by 1H-NMR to Discriminate between Red Wines

from Organic and Biodynamic Grapes. Food and Nutrition Sciences, 5(1), 52–59.

https://doi.org/10.4236/FNS.2014.51007

Lamanna, R., Piscioneri, I., Romanelli, V., & Sharma, N. (2008). A preliminary study of soft cheese

degradation in different packaging conditions by 1H-NMR. Magnetic Resonance in Chemistry, 46(9),

–831. https://doi.org/10.1002/MRC.2258

Le Tohic, C., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., Kerry, J. P., &

Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese.

Journal of Food Engineering, 220, 56–64. https://doi.org/10.1016/J.JFOODENG.2017.02.003

Li, D., Li, L., Xiao, G., Limwachiranon, J., Xu, Y., Lu, H., Yang, D., & Luo, Z. (2018). Effects of

elevated CO2 on energy metabolism and γ-aminobutyric acid shunt pathway in postharvest strawberry

fruit. Food Chemistry, 265, 281–289. https://doi.org/10.1016/J.FOODCHEM.2018.05.106

Lund, D. (2003). Predicting the impact of food processing on food constituents. Journal of Food

Engineering, 56(2–3), 113–117. https://doi.org/10.1016/s0260-8774(02)00322-9

Lv, W., Zhang, M., Wang, Y., & Adhikari, B. (2018). Online measurement of moisture content,

moisture distribution, and state of water in corn kernels during microwave vacuum drying using novel

smart NMR/MRI detection system. Https://Doi.Org/10.1080/07373937.2017.1418751, 36(13), 1592–

https://doi.org/10.1080/07373937.2017.1418751

Ma, L., Zhang, M., Xu, J., & Bai, B. (2021). Quality evaluation of Kungpao Chicken as affected by

radio frequency combined with ZnO nanoparticles. LWT, 135, 110203.

https://doi.org/10.1016/J.LWT.2020.110203

Mantihal, S., Prakash, S., & Bhandari, B. (2019). Textural modification of 3D printed dark chocolate

by varying internal infill structure. Food Research International, 121, 648–657.

https://doi.org/10.1016/j.foodres.2018.12.034

Marcone, M. F., Wang, S., Albabish, W., Nie, S., Somnarain, D., & Hill, A. (2013). Diverse foodbased

applications of nuclear magnetic resonance (NMR) technology. In Food Research International

(Vol. 51, Issue 2, pp. 729–747). https://doi.org/10.1016/j.foodres.2012.12.046

Miklos, R., Cheong, L. Z., Xu, X., Lametsch, R., & Larsen, F. H. (2015). Water and fat mobility in

myofibrillar protein gels explored by low-field NMR. Food Biophysics, 10(3), 316–323.

https://doi.org/10.1007/s11483-015-9392-5

Nordon, A., McGill, C. A., & Littlejohn, D. (2001). Process NMR spectrometry. Analyst, 126(2), 260–

https://doi.org/10.1039/b009293m

Ozel, B., & Oztop, M. H. (2021). A quick look to the use of time domain nuclear magnetic resonance

relaxometry and magnetic resonance imaging for food quality applications. In Current Opinion in Food

Science (Vol. 41, pp. 122–129). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2021.03.012

Pentimalli, M., Capitani, D., Ferrando, A., Ferri, D., Ragni, P., & Segre, A. L. (2000). Gamma

irradiation of food packaging materials: an NMR study. Polymer, 41(8), 2871–2881.

https://doi.org/10.1016/S0032-3861(99)00473-5

Pereira, F. M. V., & Colnago, L. A. (2012). Determination of the Moisture Content in Beef Without

Weighing Using Benchtop Time-Domain Nuclear Magnetic Resonance Spectrometer and

Chemometrics. Food Analytical Methods, 5(6), 1349–1353. https://doi.org/10.1007/S12161-012-9383-

Pérez, B., Nykvist, H., Brøgger, A. F., Larsen, M. B., & Falkeborg, M. F. (2007). Result. Food

Chemistry, 287, 249–257. https://doi.org/10.1016/J.FOODCHEM.2019.02.090

Phuhongsung, P., Zhang, M., & Devahastin, S. (2020). Investigation on 3D printing ability of soybean

protein isolate gels and correlations with their rheological and textural properties via LF-NMR

spectroscopic characteristics. LWT, 122, 109019. https://doi.org/10.1016/J.LWT.2020.109019

Pykett, I. L. (2000). NMR - a powerful tool for industrial process control and quality assurance. IEEE

Transactions on Applied Superconductivity, 10(1), 721–723. https://doi.org/10.1109/77.828333

Ramanjooloo, A., Bhaw-Luximon, A., Jhurry, D., & Cadet, F. (2009). 1H NMR quantitative

assessment of lactic acid produced by biofermentation of cane sugar juice. Spectroscopy Letters, 42(6–

, 296–304. https://doi.org/10.1080/00387010903178632

Razavi, M. S., Asghari, A., Azadbakh, M., & Shamsabadi, H. A. (2018). Analyzing the pear bruised

volume after static loading by Magnetic Resonance Imaging (MRI). Scientia Horticulturae, 229, 33–39.

https://doi.org/10.1016/J.SCIENTA.2017.10.011

Riegel SD. (2015). Determination of olive oil adulteration with 60-MHz benchtop NMR spectrometry.

American Laboratory, 47(2), 16–19. https://www.americanlaboratory.com/914-Application-

Notes/172517-Determination-of-Olive-Oil-Adulteration-With-60-MHz-Benchtop-NMR-Spectrometry/

Sangpring, Y., Fukuoka, M., & Ratanasumawong, S. (2015). The effect of sodium chloride on

microstructure, water migration, and texture of rice noodle. LWT - Food Science and Technology,

(2), 1107–1113. https://doi.org/10.1016/J.LWT.2015.07.035

Sekiyama, Y., Horigane, A. K., Ono, H., Irie, K., Maeda, T., & Yoshida, M. (2012). T2 distribution of

boiled dry spaghetti measured by MRI and its internal structure observed by fluorescence microscopy.

Food Research International, 48(2), 374–379. https://doi.org/10.1016/j.foodres.2012.05.019

Shao, J. H., Deng, Y. M., Song, L., Batur, A., Jia, N., & Liu, D. Y. (2016). Investigation the effects of

protein hydration states on the mobility water and fat in meat batters by LF-NMR technique. LWTFood

Science and Technology, 66, 1–6. https://doi.org/10.1016/j.lwt.2015.10.008

Shao, X., & Li, Y. (2013). Application of low-field NMR to analyze water characteristics and predict

unfrozen water in blanched sweet corn. Food and Bioprocess Technology, 6(6), 1593–1599.

https://doi.org/10.1007/s11947-011-0727-z

Shi, F., Li, Y., Wang, L., Yang, Y., Lu, K., Wu, S., & Ming, J. (2018). Measurement of moisture

transformation and distribution in Tricholoma matsutake by low field nuclear magnetic resonance

during the hot-air drying process. Journal of Food Processing and Preservation, 42(3), e13565.

https://doi.org/10.1111/jfpp.13565

Song, Y., Cheng, S., Wang, H., Zhu, B. W., Zhou, D., Yang, P., & Tan, M. (2018). Variable

temperature nuclear magnetic resonance and magnetic resonance imaging system as a novel technique

for in situ monitoring of food phase transition. Journal of Agricultural and Food Chemistry, 66(3),

–747. https://doi.org/10.1021/acs.jafc.7b04334

Uribe-Alvarez, R., O’Shea, N., Murphy, C. P., Coleman-Vaughan, C., & Guinee, T. P. (2021).

Evaluation of rennet-induced gelation under different conditions as a potential method for 3D food

printing of dairy-based high-protein formulations. Food Hydrocolloids, 114.

https://doi.org/10.1016/J.FOODHYD.2020.106542

Wang, J., Liu, C., & Sun, D. (2018). Study on relationship between polar compounds and LF-NMR

properties in fried camellia seed oil. Journal of Food and Nutrition Research, 6(7), 433–438.

https://doi.org/10.12691/jfnr-6-7-2

Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising

food material for 3D printing. Undefined, 220, 101–108.

https://doi.org/10.1016/J.JFOODENG.2017.02.029

Wang, T., Liu, T., Wang, Z., Tian, X., Yang, Y., Guo, M., Chu, J., & Zhuang, Y. (2016). A rapid and

accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal

fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance. Journal

of Microbiological Methods, 124, 13–20. https://doi.org/10.1016/j.mimet.2016.03.003

Wu, J., Li, Y., & Gao, X. (2016). Monitoring a typical fermentation process of natto by low-field

nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) techniques. Analytical

Methods, 8(39), 7135–7140. https://doi.org/10.1039/c6ay00814c

Xin, Y., Zhang, M., & Adhikari, B. (2013). Effect of trehalose and ultrasound-assisted osmotic

dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var.

botrytis L.). Journal of Food Engineering, 119(3), 640–647.

https://doi.org/10.1016/j.jfoodeng.2013.06.035

www.iejrd.com SJIF: 7.169 18

Yang, D., & Ying, Y. (2011). Applications of Raman spectroscopy in agricultural products and food

analysis: a review. Applied Spectroscopy Reviews, 46(7), 539–560. https ://doi.or g/10.1080 /0570492

2011.593216

Yue, X., Sun, J., Yang, T., Dong, Q., Li, T., Ding, S., Liang, X., Feng, K., Gao, X., Yang, M., Huang,

G., & Zhang, J. (2021). Rapid detection of Salmonella in milk by a nuclear magnetic resonance

biosensor based on the streptavidin-biotin system and O-carboxymethyl chitosan target gadolinium

probe. Journal of Dairy Science, 104(11), 11486–11498. https://doi.org/10.3168/jds.2021-20716

Zehl, M., Braunberger, C., Conrad, J., Crnogorac, M., Krasteva, S., Vogler, B., Beifuss, U., & Krenn,

L. (2011). Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically

important Drosera species by LC-DAD, LC-NMR, NMR, and LC-MS. Analytical and Bioanalytical

Chemistry, 400(8), 2565–2576. https://doi.org/10.1007/S00216-011-4690-3

Zhang, Q. Q., Li, W., Li, H. K., Chen, X. H., Jiang, M., & Dong, M. S. (2017). Low-field nuclear

magnetic resonance for online determination of water content during sausage fermentation. Journal of

Food Engineering, 212, 291–297. https://doi.org/10.1016/j.jfoodeng.2017.05.021

Zhang, Y., Zhang, T., Fan, D., Li, J., & Fan, L. (2018). The description of oil absorption behavior of

potato chips during the frying. LWT, 96, 119–126. https://doi.org/10.1016/j.lwt.2018.04.094

Zhu, W., Wang, X., & Chen, L. (2017). Rapid detection of peanut oil adulteration using low-field

nuclear magnetic resonance and chemometrics. Food Chemistry, 216, 268–274.

https://doi.org/10.1016/j.foodchem.2016.08.051

Downloads

Published

2022-02-02

How to Cite

[1]
Tracy Naa Adoley Addotey, Richmond Godwin Afful, and Alberta Osei Barimah, “APPLICATION OF LOW-FIELD NUCLEAR MAGNETIC RESONANCE (LF-NMR) AND MAGNETIC RESONANCE IMAGING (MRI) IN FOOD ANALYSIS”, IEJRD - International Multidisciplinary Journal, vol. 7, no. 1, p. 18, Feb. 2022.